반응형

2025/10/02 2

2024년 서울시 7급 응용역학 6번 (전단 중심 쉽게 풀자!)

[응용역학 풀이] 얇은 두께 단면의 전단중심 문제 (전형적 C형 단면)이번에는 얇은 두께 단면(open section)의 전단중심(shear center)을 구하는 전형적인 문제를 풀어보겠습니다.📌 문제 조건플랜지 폭: b = 50 mm웨브 높이: h = 200 mm두께: t = 6 mm구할 것: 웨브 중앙선으로부터 전단중심까지의 거리 e1. 단면 2차 모멘트 계산단면의 2차 모멘트 $I$는 웹과 플랜지를 고려하여 다음과 같이 구합니다.$$I = \frac{1}{12} t h^3 + (b \cdot t)\left(\frac{h}{2}\right)^2 \cdot 2$$수치 대입:$$I = \frac{1}{12}\cdot 6 \cdot 200^3 + (50 \cdot 6)\cdot (100)^2 \cdot..

2024년 서울시 7급 응용역학 5번 (충격 계수를 꼭 암기해야 하나요?)

[응용역학/스프링 충격] 충격계수 빠른 풀이 vs. 공식 없이 풀기이번 문제는 다음과 같습니다. 중량 ($W=1{,}000\ \mathrm{kN})인 물체가 높이 (h=10\ \mathrm{mm}$)에서 낙하하여 스프링에 충격을 가할 때, 스프링의 충격계수 ($\delta_{\max}/\delta_{st}$)는 얼마인가?(단, 스프링 상수 ($k=5\times10^{4}\ \mathrm{kN/m}$), 정적변위는 ($\delta_{st}$), 최대동적변위는 ($\delta_{\max}$).) 1. 충격계수를 암기하고 있을 때 (빠른 풀이)이 상황의 표준 공식은 다음과 같습니다.$$\frac{\delta_{\max}}{\delta_{st}} = 1 + \sqrt{1 + \frac{2h}{\delta_{s..

반응형