반응형

처짐각법 2

2024년 서울시 7급 응용역학 6번 (쉬운 풀이 와 처짐각법 비교)

위 그림처럼 A–B–C 보에서 B는 힌지, C는 핀 지점, A는 고정단이다. 구간 BC 길이 L 전장에 균등하중 w가 작용할 때, B점 좌측 처짐각 $\theta_{BL}$과 우측 처짐각 $\theta_{BR}$의 비 $\left|\dfrac{\theta_{BL}}{\theta_{BR}}\right|$을 구하라. --- 1️⃣ 쉬운 풀이법 (중첩법) 핵심은 **정정 구조**라는 점이다. 즉, BC는 단순보로서 지점반력은 지점처짐과 무관하다. --- (1) BC의 지점반력 $$ R_B = R_C = \frac{wL}{2} $$ --- (2) 좌측(캔틸레버 AB) – 자유단 집중하중 P=R_B - 자유단 기울기 $$ \theta_{BL} = \frac{PL^2}{2EI} = \frac{\l..

2022년 국가직 7급 응용역학 7번 (쉬운 풀이 및 의미 탐구)

[응용역학] 지점침하 + 회전이 함께 작용한 단순보 문제풀이문제고정단 A가 시계방향으로 $0.002,\text{rad}$ 회전힌지단 B가 20mm 침하하여 $B \to B'$경간 $L=3,\text{m}$, $EI$ 일정, 자중 무시구할 것: $B'$ 지점의 회전각 $\theta_B$ 크기 $[10^{-3},\text{rad}]$단순히 공식만 쓰면?처짐각법에 따라 힌지단 $B$에서의 모멘트는 0이므로,$$M_{BA} = \frac{4EI}{L}\theta_B + \frac{2EI}{L}\theta_A - \frac{6EI}{L^2}\Delta = 0$$여기에$\theta_A=0.002$,$\Delta=20,\text{mm}=0.02,\text{m}$,$L=3,\text{m}$을 넣으면 곧바로$$\thet..

반응형