반응형

응용역학-구조역학 필수 이론 11

보 구조물 변위법의 기본 - 처짐각법 pt 3 (FEM 과 등가 절점 하중)

1. 개요(1) 등가 절점하중(Equivalent Nodal Force)의 개념구조역학을 공부하다 보면 “등가 절점하중(또는 등가 격점하중)”이라는 개념이 자주 등장합니다.이 용어는 단순히 수식의 변환이 아니라, 전산 구조해석의 핵심 개념 중 하나입니다.이번 글에서는“단순보 정중앙에 집중하중이 작용할 때, 양 끝단의 회전량을 구하시오.”라는 간단한 예제를 통해 등가 절점하중이 왜 필요한지, 그리고 어떻게 쓰이는지 살펴보겠습니다.(2) 전산 구조해석의 기본 관점 — Node 중심 사고현대의 구조해석 프로그램(FEM, Frame Analysis 등)은 대부분 ‘절점(Node)’ 중심으로 사고합니다.즉, 부재(Element) 내부에서 어떤 변형이 일어나더라도,그 결과를 절점에서의 힘과 변위로 환산하여 해석합니..

보 구조물 변위법의 기본 - 처짐각법 pt 2

1. 개요이번 글은 처짐각법 Pt.1에 이어 두 번째 글입니다.https://oreostructure.com/48 보 구조물 변위법의 기본 - 처짐각법 pt 11. 개요단순보 양끝에 모멘트가 작용하면 휨은 어떻게 될까요?구조물을 스프링처럼 단순 모델로 치환하는 직관은 유용하지만, 보는 단자유도 스프링과 달리 양단 회전이 독립적으로 존재합니다oreostructure.com이번에는 보의 한 지점에서 지점 침하(Settlement) 가 발생했을 때이를 어떻게 해석해야 하는가에 대해 다뤄보겠습니다.이때 핵심은 두 가지입니다.첫째, 지점 침하로 인해 양단 모멘트가 어떻게 발생하는지,둘째, 이 모멘트가 보의 회전량과 어떤 관계를 가지는지를 이해하는 것입니다. 이번 포스팅에서는 이러한 과정을 순수한 기하학적 변형도(..

보의 처짐 - 이중적분과 공액보법

공액보법(Conjugate Beam Method)과 이중적분법의 관계보의 처짐과 기울기를 구하는 방법에는 여러 가지가 있습니다.그중 공액보법(Conjugate Beam Method)은 이중적분법(Double Integration Method)과 밀접한 관계를 가지며,이중적분 과정을 보다 직관적으로 이해할 수 있도록 만들어진 개념적 방법입니다.1. 기본 개념단면 2차모멘트 $I$와 탄성계수 $E$를 가진 보의 휨 방정식은 다음과 같습니다.$$EI \frac{d^2y}{dx^2} = M(x)$$여기서$M(x)$ : 실제보의 휨모멘트$y(x)$ : 처짐입니다.이를 두 번 적분하면 다음과 같은 관계를 얻습니다.$$\frac{dy}{dx} = \theta(x) = \int \frac{M(x)}{EI} , dx$$..

자유진동 Free Vibration 과 고유진동수

자유진동 Free Vibration과 고유진동수 Natural Frequency구조물이나 물체가 외력 없이 스스로 진동하는 현상을 자유진동 , Free Vibration 이라고 합니다.즉, 한 번 변형시킨 뒤 손을 떼었을 때, 구조물이 자체의 탄성력과 관성력만으로 움직이는 진동을 말합니다.1. 자유진동의 기본 개념스프링에 질량 $m$이 달려 있고, 스프링 상수가 $k$라고 합니다.한 번 아래로 당겼다가 놓으면, 물체는 복원력과 관성력에 의해 왕복 운동을 하게 됩니다.이때 운동방정식은 다음과 같습니다.$$m\ddot{x} + kx = 0$$여기서$m$: 질량$k$: 스프링 상수 (강성도, stiffness)$x$: 변위$\ddot{x}$: 가속도2. 고유진동수의 유도위의 방정식은 조화진동(harmonic ..

보 구조물 변위법의 기본 - 처짐각법 pt 1

1. 개요단순보 양끝에 모멘트가 작용하면 휨은 어떻게 될까요?구조물을 스프링처럼 단순 모델로 치환하는 직관은 유용하지만, 보는 단자유도 스프링과 달리 양단 회전이 독립적으로 존재합니다. 다시 말해, 스프링은 인장/압축 하나의 작용만 고려하면 되지만, 보의 양단에는 서로 다른 방향(시계/반시계)의 모멘트 M1, M2가 동시에 작용할 수 있습니다.이 글에서는 양단 모멘트 M1, M2를 받은 단순보에 대해, 각 단의 회전각(슬로프)과 처짐 관계를 공액보법(Conjugate Beam Method) 으로 간결하게 유도해볼 것 입니다. 2. 공액보법을 통한 유연도 유도위 구조물의 경우 모멘트는 M1에서 -M2까지 선형적으로 변합니다. 이에 따른 곡률 (M/EI) 는 다음과 같이 나타낼 수 있습니다.공액보법의 원리에..

스프링의 직렬 연결과 병렬 연결

1. 스프링의 직렬 연결① 구조적 의미두 개 이상의 스프링이 한 줄로 연결되어 한 점에서 다음 점으로 순차적으로 하중을 전달하는 형태입니다.즉, 모든 스프링에 걸리는 힘은 동일하지만, 변형(변위)은 각 스프링마다 독립적으로 발생합니다.스프링을 여러 개 줄줄이 이어 붙인 모습을 떠올려보세요.마치 침대 매트리스의 스프링을 세로로 한 줄로 쌓아 놓은 모양입니다.이런 상태에서 위에서 누르면,수직 배열된 스프링에 같은 힘이 전달되지만,각 수직 배열된 스프링이 눌리는 정도(변형) 는 다를 수 있습니다.② 자유도 관점각 스프링은 자체적으로 늘어나거나 줄어들 수 있으므로,구조 전체의 자유도는 스프링 수에 따라 증가합니다.예를 들어, 위 그림처럼 고정점–스프링1–스프링2–하중점 형태라면,스프링1과 스프링2의 변형은 독립..

EA가 무한할 때의 자유도와 종속 자유도

구조해석에서 자유도(Degree of Freedom, DOF)는 구조물이 독립적으로 움직일 수 있는 방향의 수를 의미한다.그러나 구조물의 일부 부재가 매우 큰 축강성(EA)을 가질 경우, 일부 자유도는 서로 종속 관계를 이루게 된다.이 글에서는 축강성이 무한할 때 자유도에 어떤 변화가 생기는지, 그리고 종속 자유도가 어떤 의미를 가지는지를 정리한다.1. EA가 무한하다는 뜻축강성은 부재가 축방향 변형을 얼마나 억제하는지를 나타내는 값으로,$$ EA = E \times A $$이다.여기서 $E$는 탄성계수, $A$는 단면적이다.$EA$가 무한대라는 것은 부재가 축방향으로 신장되거나 압축될 수 없다는 뜻이다.즉, 부재의 양 끝단 사이 길이가 절대 변하지 않는 상태이다.$$\delta = \frac{N L}{..

구조물의 자유도 (Degree of Freedom, DOF)

구조물의 자유도 (Degree of Freedom, DOF)구조물 해석에서 자유도(Degree of Freedom, DOF)란구조물이 자유롭게 움직일 수 있는 독립된 방향의 수를 말한다.즉, 구조물이 몇 가지 방식으로 움직일 수 있는지를 나타내는 개념이다.1. 자유도의 기본 개념하나의 절점(Joint)이 자유롭게 움직일 수 있는 방향은 최대 세 가지다.수평 방향 이동 ($x$ 방향) 수직 방향 이동 ($y$ 방향) 회전 ($\theta$ 방향)예를 들어, 한 점이 $x$, $y$ 방향으로 이동할 수 있고 회전도 가능하다면그 절점은 총 3개의 자유도를 가진다.2. 전체 자유도 (Global DOF)Global DOF는 구조물 전체가 가질 수 있는 자유도의 수를 의미한다.예를 들어 절점이 $N$개인 평면..

강체 기둥 좌굴 - 반드시 빠르게 정답을 정확하게 도출하자

외부 가상일과 내부 가상일1. 외부 가상일강체 기둥에 외력 P가 길이 L의 강체 기둥을 $\theta$ 만큼 기울였을때 P가 하는 일은 $P\times L\times \theta^{2}$2. 내부 가상일회전 스프링 : 회전 스프링이 회전한 총 각도 - 왼쪽+ 오른쪽 각도-를 $\theta$ 라고 하면 $K_{s}\times\theta^{2}$일반 스프링 : 스프링에 인장 혹은 압축된 변형을 $\delta$라 할때 $K_{s}\times\delta^{2}$3. 가상 변위의 법칙외부일과 내부일은 동일하다.강체 기둥 문제는 이와 같은 가상변위의 법칙으로 빠르게 풀린다. 예시 1 : 2015년 서울시 7급 응용역학 4번아래 문제는 15년 서울시 7급 문제다.외부일은 기둥 두개가 한일은 $P\times2\ti..

2012년 구조역학 5급 공채 문제를 통해서 보는 변위법

1. 풀이의 방향요즘 구조기술사나 기술고시 문제 풀이를 보면, 공학용 계산기를 통해 최소일(에너지법) 혹은 매트릭스 변위법에만 의존하는 방식이 많다. 일부 강사는 “시험장에서 답만 맞추면 된다”는 논리로 최소일법이나 매트릭스 계산을 강조하지만, 이는 계산 중심의 훈련일 뿐 개념적 이해를 깊게 하지 못하는 방식이라 생각한다. 위 문제에 처짐각법으로 구성방정식을 세우고 이를 자연스럽게 매트릭스 형태로 확장하는 과정을 통해, 사람들이 흔히 별개의 방법이라 생각하는 두 접근이 사실상 같은 원리를 공유함을 보여주고자 한다.2. 구조물 개요이 구조물의 Global 자유도(DOF) 는 A, B, C, D 절점의 회전-Rotation 자유도 4개와 전체 구조물의 수평 혹은 수직 이동-Sway 자유도 1개를 포함하여..

반응형