반응형

기출풀이 27

2018년 7급 국가직 응용역학 5번 (EI+강체 유형을 접근하는 여러 방식)

1. 개요강체(EI=∞)가 문제에 등장했을 때의 감각문제를 많이 풀다 보면, EI가 무한인 강체가 등장할 때 느껴야 하는 감각이 생깁니다. 첫째, 문제가 오히려 단순해집니다.강체는 휨 변형이 없기 때문에 여러 절점의 움직임이 서로 묶이며,많은 종속 자유도를 만들어 냅니다.즉, 기구학적(Kinematic) 관계를 세우기가 훨씬 쉬워집니다. 둘째, 처짐을 구할 때 큰 도움이 됩니다.EI가 무한이면, 휨에 의한 변형에너지는 존재할 수 없습니다.따라서 강체 구간의 처짐은 단순히 각도 × 길이로 계산할 수 있습니다.이를 모멘트 면적법 관점에서 보면,M/EI 도식에서 EI=∞ 인 부분의 면적은 0이 됩니다.즉, 이전 구간(M/EI ≠ 0)에서 생긴 회전각(θ)에 그 지점까지의 길이(모멘트 암)을 곱하면그 값이 바로..

2017년 7급 국가직 응용역학 15번 문제

이번 문제는 세 가지 방법으로 접근해 보겠습니다.① 최소일의 원리② 처짐각법③ 모멘트 면적법세 방법 모두 손계산으로 충분히 풀 수 있는 수준이며,개인적으로는 이 문제에 대해서는 최소일의 원리가 가장 간단하다고 판단합니다.하지만 어떤 분은 모멘트 면적법이 더 직관적이라고 생각하실 수도 있겠죠.즉, 어느 방법이 더 편한지는 다소 주관적인 부분이 있다고 봅니다.또한, 본 문제에서는 EI가 무한대인 구간을 어떻게 다루는가에 대한변위법 관점의 접근도 함께 생각해 보시면 좋겠습니다.이 포스팅이 그 점에서 이해를 확장하는 계기가 되었으면 합니다.1. 최소일의 원리2. 처짐각법강체부(EI가 무한대인 구간)가 δ₁만큼 변위가 생기면, 그 회전각이 곧 EI가 유한한 구간이 시작되는 지점의 초기 기울기 조건이 됩니다.3.모..

2024년 9급 국가직 응용역학개론

2024년 9급 응용역학개론 기출 풀이 총평2024년 9급 응용역학개론 시험은 전반적으로 기존에 출제되던 유형에서 크게 벗어나지 않았다.기본 개념을 정확히 이해하고 있다면 계산이 복잡하지 않고, 빠르게 풀 수 있는 문제들이 대부분이었다.1. 전반적 경향이번 시험은 기본 원리를 명확히 알고 있는 수험생이라면 큰 어려움 없이 풀 수 있는 수준이었다.공식 암기보다 개념 이해를 중심으로 공부했다면 계산 과정이 거의 필요하지 않은 문제들이 많았다.2. 신유형 문항이번 시험에서 눈에 띄는 새로운 유형은 13번 문제였다.Müller-Breslau의 영향선법을 활용하는 문제로,가상변위의 법칙을 이해하고 있다면 어렵지 않게 해결할 수 있다.거더 하단에 전단 해제(shear release)가 주어졌을 때,위쪽 바닥판의 변..

2024년 7급 국가직 응용역학 풀이 (스마트한 풀이는 실수를 줄인다.)

총평2024년 7급 국가직 응용역학 시험은 일부 계산을 요구하는 문항이 있었지만, 전반적으로 많은 연산이 필요한 편은 아니었다.7급의 난점은 “문제 자체의 난도”보다 “한정된 시간 안에 손계산으로 정확히 끝내는 것”에 있다.기출은 항상 편안한 의자에 앉아 아이스아메리카를 마시며 공학계산기로 풀며 연습하면 누구나 풀수 있는 난이도의 문제다.따라서 계산기를 활용하며 어리석은 방식으로 문제를 풀지말고, 실전과 같은 조건에서 문제를 어떻게 하면 쉽게 풀 수 있을지를 평상시에 고민하자. 실수를 줄이고 시간을 단축하려면 다음 원칙을 적극 활용하자.대칭이 있으면 반드시 대칭 장치를 쓴다.사칙연산이 길어지면 분수를 활용하고 공통된 것을 묶는다.보기를 최대한 활용한다. 특히 보기의 단위는 큰 힌트가 되는 때가 많다.단면..

2025년 9급 지방직 응용역학개론

2025년도 9급 지방직 응용역학개론풀이 총평2025년도 9급 지방직 응용역학개론 시험은 전반적으로 매우 쉬운 난이도로 출제되었습니다.모든 문항이 기본 원리에 충실하며, 1번부터 20번까지 모두 빠른 시간 내 해결이 가능한 유형이었습니다.✦ 시험 난이도 및 전반적 특징난이도: 매우 쉬움문제 유형: 기본 공식과 정의를 정확히 알고 있으면 풀이 가능시간 배분: 20문항 전부 30초 이내 풀이 가능출제 경향: 계산보다는 개념 중심, 필요한 계산량이 많지 않음✦ 블로그의 풀이 방향이번 해설에서는 단순히 정답만을 제시하는 것이 아니라,"평형방정식으로 푸는 문제들에 대해 가상변위의 법칙도 쉽게 적용가능하다”는 점을 보여주는 데 초점을 두었습니다.평형방정식, 가상변위의 법칙, 이 두 접근법은 결과론 적으로 다르지 않..

2024년 군무원 응용역학 7급 문제 풀이

2024년 7급 군무원 응용역학 기출 총평2024년 군무원 7급 응용역학 시험은 기본 개념을 묻는 문제와 계산량이 많은 문제의 구분이 명확했다.시간 안배와 선택적 접근이 중요했으며, 어려운 문제를 붙잡기보다는 반드시 맞춰야 하는 문제에서 점수를 확보하는 것이 핵심이었다.난이도는 어려운 편이다.반드시 맞춰야 하는 문제2, 3, 4, 7, 12, 13, 14, 15, 18, 21, 22, 24, 25이 구간의 문제들은 난이도가 낮고 기출 유형과 유사했다.기본 공식 암기와 계산 숙련도가 있으면 빠르게 정답을 찾을 수 있었다.시간은 조금 걸리지만 풀만한 문제16, 19 ,20어색한 유형이지만 효율적 접근법통해 풀만했다.19번의 경우 K트러스 단면법을 학습하였다면 매우 쉬운 유형으로 분류된다.시간이 막대하게 걸리..

2024년 7급 군무원 응용역학 5번 (적분법/ 등가면적법/ 직관적 사고법)

[응용역학] 원형 테이퍼 막대의 축변형 – 적분법, 등가단면법, 직관적 사고법 비교아래의 예제를 통해 세 가지 접근법(적분법, 등가단면법, 직관적 사고법)을 비교해보겠습니다.문제지름이 $2d$에서 $d$로 선형적으로 변하는 원형 단면 부재(길이 $L$)에축방향 하중 $4P$가 작용할 때,전체 축방향 변위는 얼마인가?(단, 탄성계수 $E$는 일정하다.)1. 적분법가장 기본적인 접근법은 변위의 정의식부터 출발한다.$$\delta = \int_0^L \frac{N(x)}{E A(x)} dx$$이때 축력 $N(x)$는 일정하므로 $N(x) = 4P$이다.지름이 선형적으로 변하므로$$D(x) = d\left(1 + \frac{x}{L}\right)$$따라서 단면적은$$A(x) = \frac{\pi}{4} D(x)..

2024년 7급 서울시 응용역학 풀이 (“어려워 보여도 기본으로 끝낸다”)

“바로 풀린다” 리스트 (문제당 30초 내외)아래 문제들은 핵심 정의·기본 공식·도식화 한 컷으로 풀리는 유형이었습니다.풀이 팁은 **“불필요한 전개 금지 / 핵심 값만 뽑기”**에 초점.1, 2, 3, 5, 9, 10, 11, 12, 13, 16, 17, 18, 1920(반원 도심): 공식 암기 플레이“시간이 걸리지만 풀만하다” 리스트4, 7, 8, 14, 15“시험장에선 미권장(패스 권장)” — 6번 전단중심

2022년 국가직 7급 응용역학 7번 (쉬운 풀이 및 의미 탐구)

[응용역학] 지점침하 + 회전이 함께 작용한 단순보 문제풀이문제고정단 A가 시계방향으로 $0.002,\text{rad}$ 회전힌지단 B가 20mm 침하하여 $B \to B'$경간 $L=3,\text{m}$, $EI$ 일정, 자중 무시구할 것: $B'$ 지점의 회전각 $\theta_B$ 크기 $[10^{-3},\text{rad}]$단순히 공식만 쓰면?처짐각법에 따라 힌지단 $B$에서의 모멘트는 0이므로,$$M_{BA} = \frac{4EI}{L}\theta_B + \frac{2EI}{L}\theta_A - \frac{6EI}{L^2}\Delta = 0$$여기에$\theta_A=0.002$,$\Delta=20,\text{mm}=0.02,\text{m}$,$L=3,\text{m}$을 넣으면 곧바로$$\thet..

2025년 군무원 응용역학 7급 문제 풀이

한줄 총평“속전속결형” 시험이었습니다. 계산량이 적은 개념 확인 문제가 대다수였고, 기본 공식과 부호 감각만 정확하면 빠르게 고득점이 가능한 구성이었습니다. (예: 1~5번의 정역학·보 기본 문항, 16번 영향선 개념, 20번 중앙 처짐, 21~22번 단순 응력·반력 등)난이도 분류계산량이 적고 매우 쉬움 (22문항)1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25→ 정역학/단면력·반력, 재료역학 기초, 영향선의 “정성 판단”, 표준 처짐·응력 공식 적용이 주류였습니다. (예: 1–5, 7–9, 11–15, 16–20, 21–22, 24–25)조금 계산량이 있고 쉬움 (3문항)6, 10, 23→ 위치 지정된 휨응력..

반응형