반응형

전체 글 81

공액보법의 응용으로 쉽게 풀기 (2025년 서울시 7급 13번)

1. 개요이번 문제를 공액보법(Conjugate Beam Method) 으로 푼다고 가정해 보겠습니다.먼저, 실제 보의 굽힘모멘트도(BMD) 를 산정한 뒤,이를 EI로 나누어 단순보에 작용하는 등가 하중으로 치환하는 과정을 거치게 됩니다.즉, M/EI 도를 단순보 위의 하중 분포로 바꾸는 것이 첫 단계입니다. 하지만 공액보법을 적용할 때 가장 시간이 소요되는 부분은바로 공액보의 반력 계산입니다.이를 일일이 적분하거나 모멘트 균형으로 구하면 복잡해지기 때문입니다.이때 유용한 방법이 바로 등가 하중(Equivalent Load) 을 이용하는 것입니다.공액보의 반력을 등가하중으로 빠르게 환산하면 복잡한 계산 과정을 상당히 단축할 수 있습니다. 특히, 단순보로 모델링했을 때 공액보의 반력은 실제 보의 회전량(θ..

보의 처짐 - 이중적분과 공액보법

공액보법(Conjugate Beam Method)과 이중적분법의 관계보의 처짐과 기울기를 구하는 방법에는 여러 가지가 있습니다.그중 공액보법(Conjugate Beam Method)은 이중적분법(Double Integration Method)과 밀접한 관계를 가지며,이중적분 과정을 보다 직관적으로 이해할 수 있도록 만들어진 개념적 방법입니다.1. 기본 개념단면 2차모멘트 $I$와 탄성계수 $E$를 가진 보의 휨 방정식은 다음과 같습니다.$$EI \frac{d^2y}{dx^2} = M(x)$$여기서$M(x)$ : 실제보의 휨모멘트$y(x)$ : 처짐입니다.이를 두 번 적분하면 다음과 같은 관계를 얻습니다.$$\frac{dy}{dx} = \theta(x) = \int \frac{M(x)}{EI} , dx$$..

자유진동 Free Vibration 과 고유진동수

자유진동 Free Vibration과 고유진동수 Natural Frequency구조물이나 물체가 외력 없이 스스로 진동하는 현상을 자유진동 , Free Vibration 이라고 합니다.즉, 한 번 변형시킨 뒤 손을 떼었을 때, 구조물이 자체의 탄성력과 관성력만으로 움직이는 진동을 말합니다.1. 자유진동의 기본 개념스프링에 질량 $m$이 달려 있고, 스프링 상수가 $k$라고 합니다.한 번 아래로 당겼다가 놓으면, 물체는 복원력과 관성력에 의해 왕복 운동을 하게 됩니다.이때 운동방정식은 다음과 같습니다.$$m\ddot{x} + kx = 0$$여기서$m$: 질량$k$: 스프링 상수 (강성도, stiffness)$x$: 변위$\ddot{x}$: 가속도2. 고유진동수의 유도위의 방정식은 조화진동(harmonic ..

가상 변위의 법칙으로 강성도 산정 및 등가하중으로 처짐 구하기 (2024년 서울시 7급 16번)

1. 개요공식은 많이 외울수록 도움이 될 수 있지만, 그만큼 정확하게 기억하는 것이 중요합니다.만약 공식이 헷갈리거나 기억이 모호해진다면, 언제든지 빠르게 다시 유도할 수 있는 능력을 갖추는 것이 더 실질적인 실력이라고 생각합니다.이를 위해서는 기본적인 강성(Stiffness) 개념과 등가 격점하중(Equivalent Nodal Load) 의 활용법을 확실히 익혀두는 것이 좋습니다. 대부분의 교재나 참고서에서는 공액보법(Conjugate Beam Method) 이나 모멘트 면적법(Moment-Area Method) 을 이용해 처짐을 계산하지만,저는 앞으로 처짐각법(Slope-Deflection Method) 과가상변위의 법칙(Virtual Work Principle) 에 기반한 변위법(Displaceme..

2018년 7급 응용역학 9번 문제 (지점 종류에 따른 좌굴 하중의 차이)

1. 개요이 문제는 전형적인 좌굴문제입니다.여기서 압축 하중은 온도 변화로 인한 내력으로 작용합니다.문제에서 주어진 조건을 보면,B 지점의 지지 상태가 단순히 “이동 지점으로 지지된다”라고만 표현되어 있습니다.이 표현은 읽을때 지점 이라는 단어에 집중하면 안됩니다구조물의 자유도(Degree of Freedom) 관점에서 어떻게 해석해야 할지 명확히 판단해야 합니다.1) ‘지점’이라는 단어에 집중할 때단어 그대로 해석하면 많은 분들이고정단–고정단(Fixed–Fixed) 혹은 고정단–고정 롤러(Fixed–Fixed Roller) 조건만을 떠올릴 수 있습니다.그러나 문제의 표현에는 “이동” 이라는 단서가 있습니다.즉, 수평 변위(Sway 변위) 가 허용된다는 뜻이므로,고정단–고정단(Fixed–Fixed) 조건..

2025년 7급 서울시 응용역학 풀이 (유연도와 강성도에 익숙해지자)

“바로 풀린다” 리스트 (문제당 30초 내외)1, 2, 3, 6 (부재의 부피 산정 매우 간단), 7(보기 활용), 9 (출제자의 배려), 10 (보기 활용)11 (변위일치 공식을 알려줌), 13(전형적인 유형), 14 (가상일의 원리, 부재수도 2개만)16 (자주 쓰이는 Stiffness 암기시 매우 수월), 17 (출제자의 배려), 18 (매우 간단한 단면법)19 (스프링의 병렬연결)“시간이 걸리지만 풀만하다” 리스트4 (최대 모멘트 위치 파악), 8, 12 (물성치가 많으면 하나를 기준으로 몇배수인지 보자),15 (변형률 값이 기하학적으로 들어오지 않아 불가피하게 공식 활용)20 (에너지 법_ 충격하중의 원리)“나머지 풀고 되돌아 오자” 리스트5 (영부재가 많아서 실수할 가능성 있다)1. 총평이번 ..

2025년 5급 공채 응용역학 1번 문제

1. 개요이번 문제는 캔틸레버 ABC 구조에서 C점의 처짐이 기존의 3분의 2로 줄어들도록 하는 외력,즉 등가 스프링력을 먼저 구하는 것을 목표로 합니다.첫 번째 단계에서는, 캔틸레버의 끝단 C점 처짐을 기준으로 설정한 뒤, 이 처짐을 줄이기 위해 B점에 설치된 탄성지점이 보에 가하는 힘을 계산합니다. 이 힘이 바로 등가 스프링력이 됩니다.두 번째 단계에서는, 위에서 구한 값을 이용하여 B점의 실제 처짐을 계산하고, 이를 통해 등가 스프링 상수를 구하게 됩니다.즉, 보의 강성과 길이에 따라 스프링이 얼마나 저항하는지를 나타내는 값입니다.마지막으로, 문제에 제시된 스프링의 연결 형태(병렬 및 직렬 연결) 를 이용해기준 스프링 상수인 k₀에 대한 관계식을 세우고,앞서 구한 등가 스프링 상수와 같다고 두어 최..

2022년 9급 국가직 응용역학 개론 10번 - 보기를 통한 합리적 추론 기술

1. 개요위의 문제를 보면,“계산을 하지 않고 보기만 보고 바로 ①번을 선택할 수 있다”라고 하면선뜻 믿기 어려울 수도 있습니다.하지만 실제 응용역학개론 문제를 자세히 살펴보면,보기의 구성을 분석하는 것만으로도정답을 50%, 심지어 100% 확률로 추론할 수 있는 경우가 의외로 많습니다.앞으로는 특히 9급 응용역학 문제를 중심으로,이러한 ‘보기 분석을 통한 합리적 추론법’ 에 대해서도기회가 될 때마다 다뤄볼 예정입니다. 2. 문제풀이이 문제를 정석적으로 풀자면 공액보법을 사용하는 것이 가장 편리합니다.하지만 이는 삼각 분포하중의 단순보의 C지점에서 모멘트를 구한다는 점에서 긴시간이 소요됩니다.다만, 시험장에서 시간을 절약하기 위해서는대략적인 처짐의 범위를 암산 수준으로 판단할 수 있으면 좋습니다.중앙점의..

보 구조물 변위법의 기본 - 처짐각법 pt 1

1. 개요단순보 양끝에 모멘트가 작용하면 휨은 어떻게 될까요?구조물을 스프링처럼 단순 모델로 치환하는 직관은 유용하지만, 보는 단자유도 스프링과 달리 양단 회전이 독립적으로 존재합니다. 다시 말해, 스프링은 인장/압축 하나의 작용만 고려하면 되지만, 보의 양단에는 서로 다른 방향(시계/반시계)의 모멘트 M1, M2가 동시에 작용할 수 있습니다.이 글에서는 양단 모멘트 M1, M2를 받은 단순보에 대해, 각 단의 회전각(슬로프)과 처짐 관계를 공액보법(Conjugate Beam Method) 으로 간결하게 유도해볼 것 입니다. 2. 공액보법을 통한 유연도 유도위 구조물의 경우 모멘트는 M1에서 -M2까지 선형적으로 변합니다. 이에 따른 곡률 (M/EI) 는 다음과 같이 나타낼 수 있습니다.공액보법의 원리에..

2017년 7급 국가직 응용역학 4번 풀이 (힘의 평형과 가상변위의 법칙)

1. 개요힘의 평형과 가상변위의 법칙2017년 7급 국가직 응용역학 문제들 중에는 힘의 평형을 이용해 풀이하는 유형들이 여럿 있습니다.하지만 이들 대부분은 가상변위의 법칙을 적용해도 똑같이, 오히려 더 쉽게 풀 수 있습니다.그렇다고 해서 “가상변위로 풀면 더 쉬운 문제”가 따로 있는 것은 아닙니다.두 방법은 결국 같은 원리에 기반하므로, 가상변위로 유도한 공식과 힘의 평형으로 유도한 공식은 동일한 결과를 줍니다. A 매트릭스와 Kinematic 관계 (변위 매트릭스를 공부하는 사람을 위해)이 원리는 구조기술사 수험생들이 흔히 말하는 ‘A 매트릭스’를 힘의 평형으로 세우는 이유와도 같습니다.즉, Kinematic 관계(운동학적 관계) 를 직접 세우기 어렵다면, 평형방정식을 통해 동일한 관계를 얻을 수 있다..

반응형