반응형

구조역학 39

보 구조물 변위법의 기본 - 처짐각법 pt 2

1. 개요이번 글은 처짐각법 Pt.1에 이어 두 번째 글입니다.https://oreostructure.com/48 보 구조물 변위법의 기본 - 처짐각법 pt 11. 개요단순보 양끝에 모멘트가 작용하면 휨은 어떻게 될까요?구조물을 스프링처럼 단순 모델로 치환하는 직관은 유용하지만, 보는 단자유도 스프링과 달리 양단 회전이 독립적으로 존재합니다oreostructure.com이번에는 보의 한 지점에서 지점 침하(Settlement) 가 발생했을 때이를 어떻게 해석해야 하는가에 대해 다뤄보겠습니다.이때 핵심은 두 가지입니다.첫째, 지점 침하로 인해 양단 모멘트가 어떻게 발생하는지,둘째, 이 모멘트가 보의 회전량과 어떤 관계를 가지는지를 이해하는 것입니다. 이번 포스팅에서는 이러한 과정을 순수한 기하학적 변형도(..

2018년 국가직 7급 20번 (직렬 병렬 연결을 좋아하는 출제자들)

1. 개요5급 · 7급 · 9급 시험의 출제 경향 비교사실 5급·7급·9급 응용역학 시험은 모두 학부 수준의 기본 이론 범위 안에서 출제됩니다.다만, 계산 도구의 사용 가능 여부와 문제의 구조 단순화 정도에 따라 난이도가 달라집니다.7급과 9급 시험은 공학용 계산기 사용이 불가능하기 때문에모든 계산을 손으로 직접 수행해야 합니다.따라서 문제는 상대적으로 단순한 구조물 형태로 출제되고,산술적으로 깔끔하게 떨어지는 수치 구성을 통해출제자의 일종의 배려가 느껴지는 문제들이 많습니다.반면, 5급 시험은 공학용 계산기의 사용이 허용되므로이와 같은 단순화된 배려가 거의 없습니다.문제의 구조가 더 복잡해지고, 계산 과정도 길어지는 경향이 있습니다.이러한 차이는 2018년 국가직 7급 20번 문제와 2025년 5급 공..

보의 처짐 - 이중적분과 공액보법

공액보법(Conjugate Beam Method)과 이중적분법의 관계보의 처짐과 기울기를 구하는 방법에는 여러 가지가 있습니다.그중 공액보법(Conjugate Beam Method)은 이중적분법(Double Integration Method)과 밀접한 관계를 가지며,이중적분 과정을 보다 직관적으로 이해할 수 있도록 만들어진 개념적 방법입니다.1. 기본 개념단면 2차모멘트 $I$와 탄성계수 $E$를 가진 보의 휨 방정식은 다음과 같습니다.$$EI \frac{d^2y}{dx^2} = M(x)$$여기서$M(x)$ : 실제보의 휨모멘트$y(x)$ : 처짐입니다.이를 두 번 적분하면 다음과 같은 관계를 얻습니다.$$\frac{dy}{dx} = \theta(x) = \int \frac{M(x)}{EI} , dx$$..

자유진동 Free Vibration 과 고유진동수

자유진동 Free Vibration과 고유진동수 Natural Frequency구조물이나 물체가 외력 없이 스스로 진동하는 현상을 자유진동 , Free Vibration 이라고 합니다.즉, 한 번 변형시킨 뒤 손을 떼었을 때, 구조물이 자체의 탄성력과 관성력만으로 움직이는 진동을 말합니다.1. 자유진동의 기본 개념스프링에 질량 $m$이 달려 있고, 스프링 상수가 $k$라고 합니다.한 번 아래로 당겼다가 놓으면, 물체는 복원력과 관성력에 의해 왕복 운동을 하게 됩니다.이때 운동방정식은 다음과 같습니다.$$m\ddot{x} + kx = 0$$여기서$m$: 질량$k$: 스프링 상수 (강성도, stiffness)$x$: 변위$\ddot{x}$: 가속도2. 고유진동수의 유도위의 방정식은 조화진동(harmonic ..

2018년 7급 응용역학 9번 문제 (지점 종류에 따른 좌굴 하중의 차이)

1. 개요이 문제는 전형적인 좌굴문제입니다.여기서 압축 하중은 온도 변화로 인한 내력으로 작용합니다.문제에서 주어진 조건을 보면,B 지점의 지지 상태가 단순히 “이동 지점으로 지지된다”라고만 표현되어 있습니다.이 표현은 읽을때 지점 이라는 단어에 집중하면 안됩니다구조물의 자유도(Degree of Freedom) 관점에서 어떻게 해석해야 할지 명확히 판단해야 합니다.1) ‘지점’이라는 단어에 집중할 때단어 그대로 해석하면 많은 분들이고정단–고정단(Fixed–Fixed) 혹은 고정단–고정 롤러(Fixed–Fixed Roller) 조건만을 떠올릴 수 있습니다.그러나 문제의 표현에는 “이동” 이라는 단서가 있습니다.즉, 수평 변위(Sway 변위) 가 허용된다는 뜻이므로,고정단–고정단(Fixed–Fixed) 조건..

스프링의 직렬 연결과 병렬 연결

1. 스프링의 직렬 연결① 구조적 의미두 개 이상의 스프링이 한 줄로 연결되어 한 점에서 다음 점으로 순차적으로 하중을 전달하는 형태입니다.즉, 모든 스프링에 걸리는 힘은 동일하지만, 변형(변위)은 각 스프링마다 독립적으로 발생합니다.스프링을 여러 개 줄줄이 이어 붙인 모습을 떠올려보세요.마치 침대 매트리스의 스프링을 세로로 한 줄로 쌓아 놓은 모양입니다.이런 상태에서 위에서 누르면,수직 배열된 스프링에 같은 힘이 전달되지만,각 수직 배열된 스프링이 눌리는 정도(변형) 는 다를 수 있습니다.② 자유도 관점각 스프링은 자체적으로 늘어나거나 줄어들 수 있으므로,구조 전체의 자유도는 스프링 수에 따라 증가합니다.예를 들어, 위 그림처럼 고정점–스프링1–스프링2–하중점 형태라면,스프링1과 스프링2의 변형은 독립..

EA가 무한할 때의 자유도와 종속 자유도

구조해석에서 자유도(Degree of Freedom, DOF)는 구조물이 독립적으로 움직일 수 있는 방향의 수를 의미한다.그러나 구조물의 일부 부재가 매우 큰 축강성(EA)을 가질 경우, 일부 자유도는 서로 종속 관계를 이루게 된다.이 글에서는 축강성이 무한할 때 자유도에 어떤 변화가 생기는지, 그리고 종속 자유도가 어떤 의미를 가지는지를 정리한다.1. EA가 무한하다는 뜻축강성은 부재가 축방향 변형을 얼마나 억제하는지를 나타내는 값으로,$$ EA = E \times A $$이다.여기서 $E$는 탄성계수, $A$는 단면적이다.$EA$가 무한대라는 것은 부재가 축방향으로 신장되거나 압축될 수 없다는 뜻이다.즉, 부재의 양 끝단 사이 길이가 절대 변하지 않는 상태이다.$$\delta = \frac{N L}{..

구조물의 자유도 (Degree of Freedom, DOF)

구조물의 자유도 (Degree of Freedom, DOF)구조물 해석에서 자유도(Degree of Freedom, DOF)란구조물이 자유롭게 움직일 수 있는 독립된 방향의 수를 말한다.즉, 구조물이 몇 가지 방식으로 움직일 수 있는지를 나타내는 개념이다.1. 자유도의 기본 개념하나의 절점(Joint)이 자유롭게 움직일 수 있는 방향은 최대 세 가지다.수평 방향 이동 ($x$ 방향) 수직 방향 이동 ($y$ 방향) 회전 ($\theta$ 방향)예를 들어, 한 점이 $x$, $y$ 방향으로 이동할 수 있고 회전도 가능하다면그 절점은 총 3개의 자유도를 가진다.2. 전체 자유도 (Global DOF)Global DOF는 구조물 전체가 가질 수 있는 자유도의 수를 의미한다.예를 들어 절점이 $N$개인 평면..

강체 기둥 좌굴 - 반드시 빠르게 정답을 정확하게 도출하자

외부 가상일과 내부 가상일1. 외부 가상일강체 기둥에 외력 P가 길이 L의 강체 기둥을 $\theta$ 만큼 기울였을때 P가 하는 일은 $P\times L\times \theta^{2}$2. 내부 가상일회전 스프링 : 회전 스프링이 회전한 총 각도 - 왼쪽+ 오른쪽 각도-를 $\theta$ 라고 하면 $K_{s}\times\theta^{2}$일반 스프링 : 스프링에 인장 혹은 압축된 변형을 $\delta$라 할때 $K_{s}\times\delta^{2}$3. 가상 변위의 법칙외부일과 내부일은 동일하다.강체 기둥 문제는 이와 같은 가상변위의 법칙으로 빠르게 풀린다. 예시 1 : 2015년 서울시 7급 응용역학 4번아래 문제는 15년 서울시 7급 문제다.외부일은 기둥 두개가 한일은 $P\times2\ti..

2024년 군무원 응용역학 7급 문제 풀이

2024년 7급 군무원 응용역학 기출 총평2024년 군무원 7급 응용역학 시험은 기본 개념을 묻는 문제와 계산량이 많은 문제의 구분이 명확했다.시간 안배와 선택적 접근이 중요했으며, 어려운 문제를 붙잡기보다는 반드시 맞춰야 하는 문제에서 점수를 확보하는 것이 핵심이었다.난이도는 어려운 편이다.반드시 맞춰야 하는 문제2, 3, 4, 7, 12, 13, 14, 15, 18, 21, 22, 24, 25이 구간의 문제들은 난이도가 낮고 기출 유형과 유사했다.기본 공식 암기와 계산 숙련도가 있으면 빠르게 정답을 찾을 수 있었다.시간은 조금 걸리지만 풀만한 문제16, 19 ,20어색한 유형이지만 효율적 접근법통해 풀만했다.19번의 경우 K트러스 단면법을 학습하였다면 매우 쉬운 유형으로 분류된다.시간이 막대하게 걸리..

반응형