반응형

재미있는 문제- 쉬운풀이 42

2023년 국가직 7급 9번과 2025년 서울시 7급 14번 비교 (Truss)

1. 개요https://oreostructure.com/22 가상 변위의 법칙과 적용 -2023년 7급 국가직 예시가상변위의 법칙, 이렇게 이해하면 쉽다가상변위의 법칙 -Principle of Virtual Work은구조역학에서 “외력과 내부력이 평형을 이룰 때, 아주 작은 가상의 변위를 주면 외부일과 내부일의 합이 0이 된oreostructure.com이전에 2023년 국가직 7급 9번 문제에 대한 풀이를 올린 적이 있습니다.https://oreostructure.com/51이번에는 그 문제를 2025년 서울시 7급 14번 문제와 비교하여 살펴보겠습니다. 2025년 7급 서울시 응용역학 풀이 (유연도와 강성도에 익숙해지자)“바로 풀린다” 리스트 (문제당 30초 내외)1, 2, 3, 6 (부재의 부피 산..

공액보법의 응용으로 쉽게 풀기 (2025년 서울시 7급 13번)

1. 개요이번 문제를 공액보법(Conjugate Beam Method) 으로 푼다고 가정해 보겠습니다.먼저, 실제 보의 굽힘모멘트도(BMD) 를 산정한 뒤,이를 EI로 나누어 단순보에 작용하는 등가 하중으로 치환하는 과정을 거치게 됩니다.즉, M/EI 도를 단순보 위의 하중 분포로 바꾸는 것이 첫 단계입니다. 하지만 공액보법을 적용할 때 가장 시간이 소요되는 부분은바로 공액보의 반력 계산입니다.이를 일일이 적분하거나 모멘트 균형으로 구하면 복잡해지기 때문입니다.이때 유용한 방법이 바로 등가 하중(Equivalent Load) 을 이용하는 것입니다.공액보의 반력을 등가하중으로 빠르게 환산하면 복잡한 계산 과정을 상당히 단축할 수 있습니다. 특히, 단순보로 모델링했을 때 공액보의 반력은 실제 보의 회전량(θ..

가상 변위의 법칙으로 강성도 산정 및 등가하중으로 처짐 구하기 (2024년 서울시 7급 16번)

1. 개요공식은 많이 외울수록 도움이 될 수 있지만, 그만큼 정확하게 기억하는 것이 중요합니다.만약 공식이 헷갈리거나 기억이 모호해진다면, 언제든지 빠르게 다시 유도할 수 있는 능력을 갖추는 것이 더 실질적인 실력이라고 생각합니다.이를 위해서는 기본적인 강성(Stiffness) 개념과 등가 격점하중(Equivalent Nodal Load) 의 활용법을 확실히 익혀두는 것이 좋습니다. 대부분의 교재나 참고서에서는 공액보법(Conjugate Beam Method) 이나 모멘트 면적법(Moment-Area Method) 을 이용해 처짐을 계산하지만,저는 앞으로 처짐각법(Slope-Deflection Method) 과가상변위의 법칙(Virtual Work Principle) 에 기반한 변위법(Displaceme..

2018년 7급 응용역학 9번 문제 (지점 종류에 따른 좌굴 하중의 차이)

1. 개요이 문제는 전형적인 좌굴문제입니다.여기서 압축 하중은 온도 변화로 인한 내력으로 작용합니다.문제에서 주어진 조건을 보면,B 지점의 지지 상태가 단순히 “이동 지점으로 지지된다”라고만 표현되어 있습니다.이 표현은 읽을때 지점 이라는 단어에 집중하면 안됩니다구조물의 자유도(Degree of Freedom) 관점에서 어떻게 해석해야 할지 명확히 판단해야 합니다.1) ‘지점’이라는 단어에 집중할 때단어 그대로 해석하면 많은 분들이고정단–고정단(Fixed–Fixed) 혹은 고정단–고정 롤러(Fixed–Fixed Roller) 조건만을 떠올릴 수 있습니다.그러나 문제의 표현에는 “이동” 이라는 단서가 있습니다.즉, 수평 변위(Sway 변위) 가 허용된다는 뜻이므로,고정단–고정단(Fixed–Fixed) 조건..

2025년 5급 공채 응용역학 1번 문제

1. 개요이번 문제는 캔틸레버 ABC 구조에서 C점의 처짐이 기존의 3분의 2로 줄어들도록 하는 외력,즉 등가 스프링력을 먼저 구하는 것을 목표로 합니다.첫 번째 단계에서는, 캔틸레버의 끝단 C점 처짐을 기준으로 설정한 뒤, 이 처짐을 줄이기 위해 B점에 설치된 탄성지점이 보에 가하는 힘을 계산합니다. 이 힘이 바로 등가 스프링력이 됩니다.두 번째 단계에서는, 위에서 구한 값을 이용하여 B점의 실제 처짐을 계산하고, 이를 통해 등가 스프링 상수를 구하게 됩니다.즉, 보의 강성과 길이에 따라 스프링이 얼마나 저항하는지를 나타내는 값입니다.마지막으로, 문제에 제시된 스프링의 연결 형태(병렬 및 직렬 연결) 를 이용해기준 스프링 상수인 k₀에 대한 관계식을 세우고,앞서 구한 등가 스프링 상수와 같다고 두어 최..

2022년 9급 국가직 응용역학 개론 10번 - 보기를 통한 합리적 추론 기술

1. 개요위의 문제를 보면,“계산을 하지 않고 보기만 보고 바로 ①번을 선택할 수 있다”라고 하면선뜻 믿기 어려울 수도 있습니다.하지만 실제 응용역학개론 문제를 자세히 살펴보면,보기의 구성을 분석하는 것만으로도정답을 50%, 심지어 100% 확률로 추론할 수 있는 경우가 의외로 많습니다.앞으로는 특히 9급 응용역학 문제를 중심으로,이러한 ‘보기 분석을 통한 합리적 추론법’ 에 대해서도기회가 될 때마다 다뤄볼 예정입니다. 2. 문제풀이이 문제를 정석적으로 풀자면 공액보법을 사용하는 것이 가장 편리합니다.하지만 이는 삼각 분포하중의 단순보의 C지점에서 모멘트를 구한다는 점에서 긴시간이 소요됩니다.다만, 시험장에서 시간을 절약하기 위해서는대략적인 처짐의 범위를 암산 수준으로 판단할 수 있으면 좋습니다.중앙점의..

2017년 7급 국가직 응용역학 4번 풀이 (힘의 평형과 가상변위의 법칙)

1. 개요힘의 평형과 가상변위의 법칙2017년 7급 국가직 응용역학 문제들 중에는 힘의 평형을 이용해 풀이하는 유형들이 여럿 있습니다.하지만 이들 대부분은 가상변위의 법칙을 적용해도 똑같이, 오히려 더 쉽게 풀 수 있습니다.그렇다고 해서 “가상변위로 풀면 더 쉬운 문제”가 따로 있는 것은 아닙니다.두 방법은 결국 같은 원리에 기반하므로, 가상변위로 유도한 공식과 힘의 평형으로 유도한 공식은 동일한 결과를 줍니다. A 매트릭스와 Kinematic 관계 (변위 매트릭스를 공부하는 사람을 위해)이 원리는 구조기술사 수험생들이 흔히 말하는 ‘A 매트릭스’를 힘의 평형으로 세우는 이유와도 같습니다.즉, Kinematic 관계(운동학적 관계) 를 직접 세우기 어렵다면, 평형방정식을 통해 동일한 관계를 얻을 수 있다..

구조역학 스킬 연습용 문제 (계산기 필수)

1. 개요복잡한 구조물, 어떤 방법으로 접근할 것인가위와 같은 문제가 있다고 가정해 보겠습니다.(이 문제는 제 블로그 프로필 사진에도 사용된, 다소 악명 높은 구조물입니다.)기술사나 기술고시를 준비하는 분들 중에는 워밍업(warm-up) 차원에서 매트릭스법(Matrix Method) 이나 에너지법(Energy Method) 으로 이러한 문제를 연습하시는 경우가 많습니다.계산기를 다루는 감각과 수식 전개 능력을 유지하기 위한 일종의 ‘감각 훈련’이죠.그렇다면, 이 문제는 매트릭스법으로 푸는 것이 좋을까요, 아니면 에너지법으로 푸는 것이 좋을까요? 에너지법으로 접근할 경우에너지법으로 접근하면,이 문제는 이미 3차 부정정 구조물에 해당하며게다가 변위까지 구해야 하는 문제입니다.따라서 각 절점에 대해 가상하중을..

2017년 7급 국가직 7번 (하중을 강성도 비율로 나누어 갖는 병렬연결)

1. 개요병렬 연결 문제로의 직관최근 연달아 게시한 글들의 주제는 모두 직렬 연결과 병렬 연결의 개념을 다루고 있습니다.이제 위의 문제를 보면, 자연스럽게 “이건 병렬 연결 문제구나” 하는 느낌이 오시나요?이번 문제 역시 그 연장선상에 있습니다.점 B에서의 수직 처짐은 AB 캔틸레버 부재와 BC 축부재에 동시에 영향을 미칩니다.즉, B점의 처짐에 대해 두 부재가 함께 저항하므로이 구조는 명확히 병렬 연결(parallel connection) 형태에 해당합니다.문제 단순화 전략문제를 보다 간단히 풀기 위해,AB 부재의 등분포하중을 등가 격점하중(equivalent nodal load) 으로 치환하여 다루겠습니다.이렇게 하면 하중이 절점에 집중된 형태로 바뀌어병렬 연결 관계를 더 명확히 파악할 수 있고,계산..

25년 9급 국가직 응용역학 개론 8번 - 수학 없는 변형률 게이지 접근법

1. 개요누구나 문제풀이에 공식이 잔뜩 들어간 풀이는 부담스럽게 느낍니다.그 이유는 단순합니다.첫째, 공식을 외우는 것 자체가 고역이고,둘째, 연산이 많아질수록 긴장된 시험 환경에서는 계산 실수의 가능성이 커지기 때문입니다.특히 스트레인 로제트(Strain Rosette) 문제는공식에 삼각함수가 등장하기 때문에수학에 자신이 없는 수험생에게는 다소 꺼려지는 유형으로 보일 수 있습니다.하지만 실제로는 그렇지 않습니다.스트레인 로제트 문제는 로제트 사이의 각도를 두 배로 벌린 뒤,모어 원(Mohr’s Circle) 상에서 회전시키며 해석하는 기하학적 풀이법으로도 충분히 접근할 수 있습니다.이 방법은 공식 암기에 의존하지 않으면서도문제의 본질적인 개념을 시각적으로 이해하게 해줍니다.또한 출제자 역시 지나치게 복..

반응형